GP-PRO/PBIII PLC CONNECTION MANUAL

Rockwell (Allen-Bradley) ControlLogix 5000 Series

Reading the GP-PRO/PBIII Device/PLC Connection Manual

This document is designed as an addition to the latest GP-PRO/PBIII for Windows Device/PLC Connection manual's Rockwell PLC data, and covers the Rockwell ControlLogix 5000 Series unit information.

Please refer to this data when connecting a Rockwell ControlLogix 5000 Series unit. For information concerning general type PLC connections and this document's documentation conventions, please refer to your Device/PLC Connection manual.

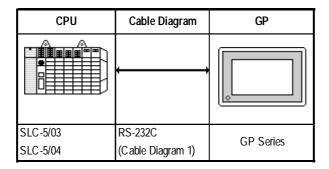
The information in this document will be included in the next version of the Device/PLC Connection manual. Therefore, please consider this a provisional document.

Installation

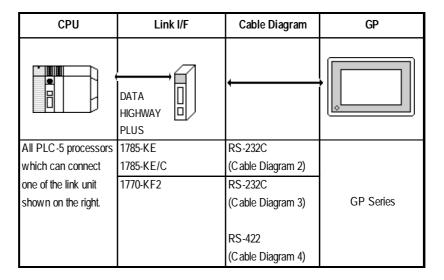
This CD-ROM includes all the protocol files required by the GP/GLC to communicate with a Rockwell PLC. Also, you will need to have the GP Screen Editor software (GP-PRO/PBIII for Windows95 version 2.1 or higher) installed on your personal computer's hard disk. For information about the installation of the GP Screen Editor software, refer to that software's Operation Manual.

- 1) Be sure to Confirm that the GP Screen Editor software is installed in your PC prior to starting this driver installation.
- 2) To install the Rockwell protocol files, click on this CD-ROM's "abcl_df1.exe" file icon.
- **3**) Once the setup program starts, follow the instructions given to install the protocol files.

When using the ControlLogix 5000 Series unit, select [Allen Bradley Control Logix (DF1)] for the " $PLC\ Type$ ".


2.17 Rockwell (Allen-Bradley)

2.17.1 System Structure


The following describes the system structure for connecting the GP to Rockwell (Allen-Bradley) PLCs.

Reference The Cable Diagrams mentioned in the following tables are listed in the section titled "2.17.2 Cable Diagrams".

■ SLC 500 Series (using CPU unit Link I/F)

■ PLC-5 Series (using Link I/F)

■ PLC-5 Series (CPU Direct Connection)

CPU *1	Cables Diagram	GP
	,	
PLC-5/11	RS-232C	
PLC-5/20	(Cable Diagram 3)	
PLC-5/30		
PLC-5/40		GP Series
PLC-5/40L	RS-422	
PLC-5/60	(Cable Diagram 5)	
PLC-5/60L		

^{*1} Connect to Channel 0 (CH0).

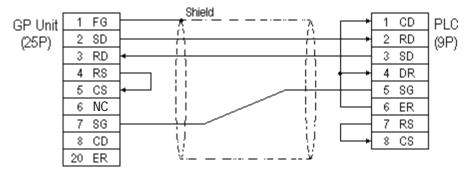
■ ControlLogix 5000 Series (using CPU unit Link I/F)

CPU	Cable Diagram	GP/GLC
0 0	←	
1756-L1	RS-232C	
1756-L1M1	<cable 6="" diagram=""></cable>	
1756-L1M2		GP Series *1
1756-L1M3		GLC Series
1756-L55M13		OLO Jenes
1756-L55M14		
1756-L55M15		

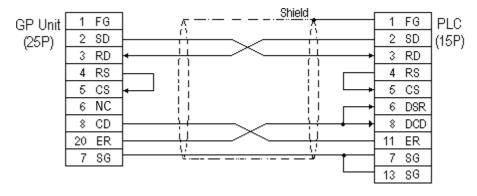
^{*1} This unit can be used with the GP-377 Series, GP77R Series, GP2000 Series, GLC2000 Series units.

2.17.2 Cable Diagrams

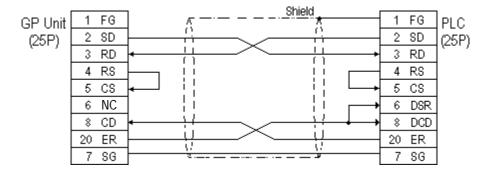
The cable diagrams illustrated below and the cable diagrams recommended by Rockwell (Allen-Bradley) may differ; however, using these cables for your PLC operations will not cause any problems.



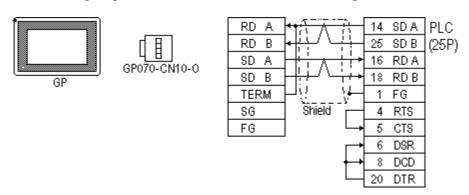
Ground your PLC's FG terminal according to your country's applicable standard. For details, refer to the corresponding PLC manual.



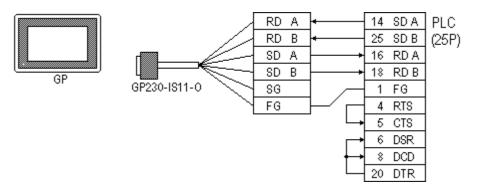
- Connect the FG line of the Shield cable to either the GP or PLC, depending on your environment. When using a connector hood and grounding the FG line, be sure to use an electrical conductor.
- For the RS-232C connection, use a cable length less than 15m.
- If a communications cable is used, it must be connected to the SG (signal ground).
- For the RS-422 connection, refer to Rockwell's PLC manual for the cable length.


Cable Diagram 1 (RS-232C)

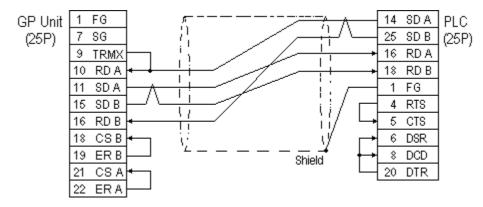
Cable Diagram 2 (RS-232C)



Cable Diagram 3 (RS-232C)

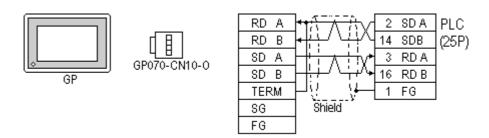


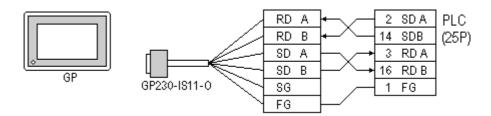
Cable Diagram 4 (RS-422)


• When using Digital's RS-422 connector terminal adapter, GP070-CN10-0

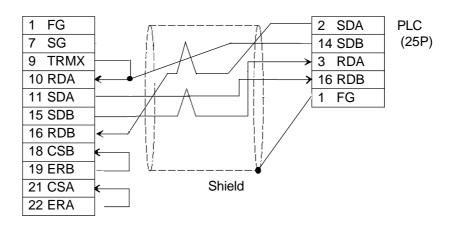
• When using Digital's RS-422 Cable, GP230-IS11-0

• When making your own cable connections

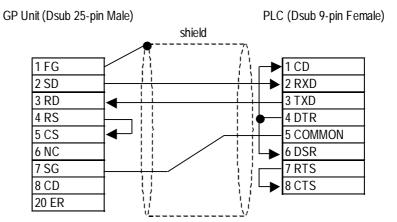



When connecting the #9 and #10 pins in the GP Serial I/F, a termination resistance of 100Ω is added between RDA and RDB.

Cable Diagram 5 (RS-422)


• When using Digital's RS-422 connector terminal adapter, GP070-CN10-0

• When using Digital's RS-422 Cable, GP230-IS11-0


• When making your own cable connections

When connecting the #9 and #10 pins in the GP Serial I/F, a termination resistance of 100Ω is added between RDA and RDB.

Cable Diagram 6 (RS-232C)

- Connect the shield to the GP's FG terminal.
- If a communications cable is used, it must be connected to the SG terminal and COMMON terminal.

2.17.3 Supported Devices

The following describes the range of devices supported by the GP.

■ SLC 500 Series

Setup System Area here.

Device	Bit Address	Word Address	Particulars	S
Bit	B0030000 ~ B003255F B0100000 ~ B255255F	B0030000 ~ B003255 B010000 ~ B255255		H/L
Timer (TT: Timing Bit)	TT0040000 ~ TT0042550 TT0100000 ~ TT2552550		*1	
Timer (DN: Completion Bit)	TN0040000 ~ TN0042550 TN0100000 ~ TN2552550		*1	
Timer (PRE: Setup Value)		TP004000 ~ TP004255 TP010000 ~ TP255255	*2	
Timer (ACC: Current Value)		TA004000 ~ TA004255 TA010000 ~ TA255255	*2	
Counter (CU: Up Count)	CU0050000 ~ CU0052550 CU0100000 ~ CU2552550		*1	L/H
Counter (DC: Down Count)	CD0050000 ~ CD0052550 CD0100000 ~ CD2552550		*1	
Counter (CN: Completion Bit)	CN0050000 ~ CN0052550 CN0100000 ~ CN2552550		*1	
Counter (PRE: Setup Value)		CP005000 ~ CP005255 CP010000~ CP255255	*2	
Counter (ACC: Current Value)		CA005000 ~ CA005255 CA010000 ~ CA255255	*2	
Integer		N007000 ~ N007255 N010000 ~ N255255	Bit F	H/L

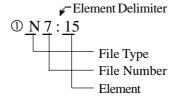
^{*1} As in Example 4 in the following Note section, enter a $\mathbf{0}$ at the end.

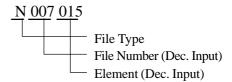
^{*2} When reading and writing consecutive addresses that are all two words or longer, reading will take longer than for other devices, and the overall screen refresh speed will be slower.

- File Numbers 0~7 are the User's default files.
- A PLC COM Error (02:10) develops when a device cannot be allotted into the PLC data table map.
- According to the SLC500 specifications, the input and output relays cannot perform direct reads and writes. As a result, perform the following procedures via the PLC:

When reading data; use a ladder program to move the input and output relay data either as bits or as integers, and then read out those bits or integers.

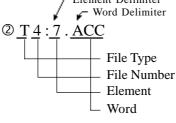
When writing data; write the data as either bits or integers, and then use the ladder program to move the data to the input or output relays.

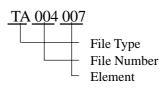

• In Rockwell (Allen-Bradley) PLCs, the structure of each device data is determined from the *Element*; in GP-PRO/PBIII for Windows there is no concept called the *Element*. Use the following examples when entering device data.

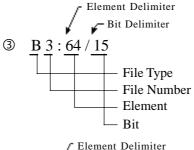

Examples

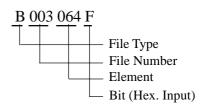
PLC Data

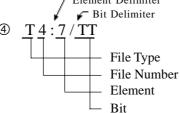
GP-PRO/PBIII Input

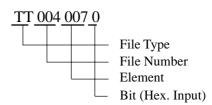

■When Using Elements




■When Using Words


© Element Delimiter





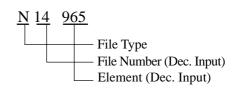
■When Using Bits

■ PLC-5 Series

	Setup System	Area here.
--	--------------	------------

Device	Bit Address	Word Address	Particular	S
Input Relay	100000 ~ 127717	1000 ~ 1277	<u>:8</u>	
Output Relay	O00000 ~ O27717	O000 ~ O277	: 8	H/L
Internal Relay	B300000 ~ B6799915	B3000 ~ B67999		
Timer (TT: Timing Bit)	TT3000 ~ TT67999			
Timer (TD: Complete Bit)	TD3000 ~ TD67999			
Counter (CC: Count)	CC3000 ~ CC67999			
Counter (CD: Complete Bit)	CD3000 ~ CD67999			
Timer (ACC: Current Value)		TA3000 ~ TA67999		L/H
Timer (PRE: Setup Value)		TP3000 ~ TP67999		
Counter (ACC: Current Value)		CA3000 ~ CA67999		
Counter (PRE: Setup Value)		CP3000 ~ CP67999		
Data Register Integer		N3000 ~ N67999	Bit 1 51	
Data Register BCD		D3000 ~ D67999	Bit 1 51	H/L
Data Register ASCII		A3000 ~ A67999	Bit 1 51	

- The range of supported devices may be different depending on your CPU.
- In Rockwell (Allen-Bradley) PLCs, the structure of each device data is determined from the *Element*; in GP-PRO/PBIII for Windows there is no concept called the *Element*. Use the following examples when entering device data.

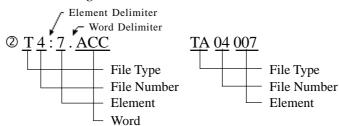

PLC Data

GP-PRO/PBIII Input

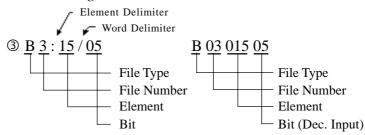
■When Using Elements

© N 14:965

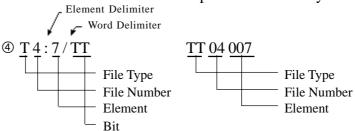
File Type
File Number
Element



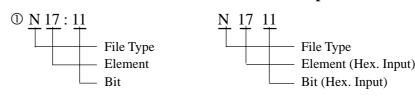
Chapter 2 - PLC-GP Connection


PLC Side

GP-PRO/PBIII Input


■When Using Words

■When Using Bits


B301505 represents the same data as B3/245 (number 245 bits of file number 3). However, GP-PRO/PBIII for Windows cannot be used to input B3/245 directly.

• There is no File Number for the *Input Relay* and *Output Relay*. Also, the Element and Bit Numbers are Hexadecimal.

PLC Side

GP-PRO/PBIII Input

■ ControlLogix 5000 Series

	Setup System Area here.
--	-------------------------

Device	Bit Address	Word Address	Paticular	
Bit (BOOL)	BOOL00000000~BOOL99999931	BOOL000000~BOOL999999	*1*3	
8 bit integer (SINT)		SINT000000~SINT999998	<u>Bit 7] (÷2</u> *1	L/H
16 bit integer (INT)		INT000000~INT999999	<u>Bit] 5</u>] *1	I L/II
32 bit integer (DINT)		DINT000000~DINT999999	<u>Bit</u> 31) *1	
32 bit float (REAL)		REAL000000~REAL999999	*1*2	H/L

*1 When using a GP Series unit to access a ControlLogix 5000 Series unit's data memory, you must first allocate data memory's array elements. When allocating array elements, use File numbers and Element numbers. An address designation example is shown below for GP-PRO/PBIII for Windows.

- *2 This device uses Float. When this type of device is used, only the E-tag and K-tag's "32-bit Float" setting can be used.
- *3 The BOOL device descriptions used in the GP-PRO/PBIII manual and the RSLogix 5000 manual are different. Please be aware of these differences when setting up BOOL devices.

GP-PRO/PBIII manual	000000 00~	000001 00~	000002 00~	~	000999 00~
GF-FRO/FDIII IIIailuai	000000 31	000001 31	000002 31	~	000999 31
RSLogix 5000 manual	0~31	32~63	64~95	1	31968~31999

When using the GP to access a PLC device, be sure to first allocate all Tags used by PLC Data Memory to their respective devices. Use the Rockwell's RSLogix 5000 ladder logic software to allocate these devices.

If device allocation is not performed, a Host Communication Error will occur (02:D6).

▼Reference ∠ 2.17.5 Error Codes

Device Setting Example

The following explanation is for the ControlLogix 5000 device allocation.

1) PLC Tag Settings

Designate the Tag Name and Type.

- Tag Name : Can be set to any value. (Not related to GP device name)

- Type : Use one of the following data types for the Element setting.

(Use the same device name as the GP)

BOOL (32-bit data type)

INT (word data type)

DINT (dword data type)

SINT (byte data type)

REAL (float data type)

Example 1

Tag Name	Туре
N7	INT[200]
DINT1	DINT[100]
DATA2	SINT[50]

This example's data uses the following values.

Row1 : Tag Name "N7" uses the INT data type for a 200 element array.

Row2 : Tag Name "DINT1" uses the DINT data type for a 100 element array.

Row3 : Tag Name "DATA2" uses the SINT data type for a 50 element array.

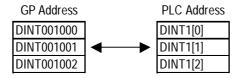
Be sure to set the number of array elements within the GP unit's maximum usable range. (The GP can access up to 999 elements.)

Also, if array elements are not designated, only one element can be used.

Ex. Tag Name:N8, Type:INT allows only one word to be used by N8.

2) Mapping Settings

The tag name set in 1) can have any desired file number allocated to it. It is not possible to set the same file number to two tag names.


Example 2

File Number	Tag Number	
2	DATA2	
1	DINT1	
7	N7	

After setting the Tag Name, Type and File Number, you can access PLC devices from the GP unit. Using example 2's data, the addresses that can be designated are as follows:

- INT007000~INT007199
- DINT001000~DINT001099
- SINT002000~SINT002049

(GP <--> PLC Address Map Example)

2.17.4 Environment Setup

The following tables list Digital's recommended PLC and GP communication settings.

■ SLC 500 Series

GP Setup		Special Interface Module Setup	
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	8 bits (fixed)		-
Stop Bit	1 bit (fix ed)		-
Parity Bit	EVEN	Parity Bit	EVEN
Data Flow Control	ER Control		
Communication Format	RS-232C		-
		Communication Driver	DF1 HALF-DUPLEX SLAVE *1
		Duplicate Packet Detection	DISABLE *1
		Error Detection	BCC *1
		Control Line	No Handshaking *1
Unit No. (DH GP) *2	0	Station Address *2	0

^{* 1} Will not operate with any other settings.

Reference Specifying DH addresses

^{* 2} Setup the Station Address and the GP's Unit No. (DH GP) address to the same value (address set as decimal values). It is unnecessary to setup the DH PLC address.

■ PLC-5 Series

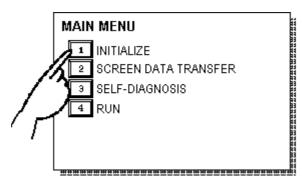
GP Setup		CPU (CH0), 178	5-KE, 1770-KF2
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	8 bits (fixed)	Data Length	8 bits (fixed)
Stop Bit	1 bit (fixed)	Stop Bit	1 bit (fixed)
Parity Bit	EVEN	Parity Bit	EVEN
Data Flow Control	ER Control		
Communication Format (RS-232C)	RS-232C	Communication Format (RS-232C)	RS-232C
Communication Format (RS-422)	4-wire type	Communication Format (RS-422)	RS-422A
		Comm. protocol	Half duplex (DF1 Slave for CH0) *1
		Dupulicate Detect	OFF *1
		Error Check	BCC *1
		Control Line	NO HANDSHAKING *1
		Other CH0 Parameters	50
		DF1 retries	3
		Diag file	0 (unused file)
		RTS send delay	0
			0
		Network link *2	Data Highway Plus
Unit No. (DH GP) *3	0	Station Address *4*5 (1785-KE, 1770-KF2 side)	0
Unit No. (DH PLC) *3	1	Station Address *4 (CPU side)	1

^{*1} Will not operate with any other settings.

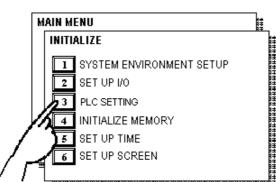
TReference Specifying DH addresses

^{*5} Unavailable for CPU Direct Connection.

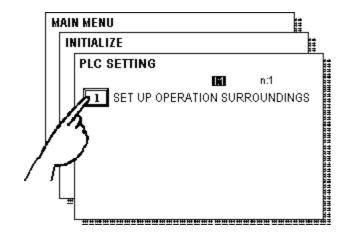
When using CH0, setup the CPU to Slave; do not setup as Point to Point.


^{*2} This is the KF2 setup

^{*3} Set the DH GP to station address 1785-KE or 1770-KF2, and set the DH PLC's to the CPU's station address. When using the 1785-KE or 1770-KF2, enter different numbers for the DH GP and DH PLC addresses. With a direct CPU connection, enter the same values in the DH GP and DH PLC addresses. With the GP in Offline Mode, use the "Operating Environment Setup" area to enter the DH address (DH, GP, DH, PLC) base 10 (decimal) values.


^{*4} When using programming equipment, make sure the Terminal Address (programming equipment address) and the Station Address do not overlap.

■ Specifying DH addresses


Set up the operating environment at the initial setup when the GP is in the OFFLINE mode.

① Touch item #1, INITIAL-IZE. The INITIALIZE menu will appear.

② Touch item #3, PLC SETTING. The PLC SETTING menu will appear.

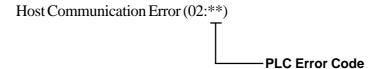
③ Touch selection [1:1] and then item #1, SET UP OPERATION SURROUNDINGS. The selected option is then highlighted.

SET	UP OPERATION SU	RROUNDINGS			SET	CANCEL	(
	SYSTEM DATA AREA	A START FILE		[-		
		START ADDRESS		[]		
	DH ADDRESS (DEC	IMAL) GP		[]		
		PLC		[]		
	SYSTEM AREA	READING AREA SIZE	(0-256)	[]		

④ Specify the DH addresses.

■ ControlLogix 5000 Series

GP Setup		PLC Setup		
Baud Rate	Baud Rate 19200 bps Baud Rate *1		19200 bps	
Data Length	8 bit	Data Bits *1	8 bit	
Stop Bit	1 bit	Stop Bit *1	1 bit	
Parity Bit	Even	Parity *1	Even	
Data Flow Control	ER			
Communication Format	RS-232C			
Unit No.	0	Station Address *2	0	
			System	
			No Handshake	
		RTS Send Delay *1	0	
		RTS Off Delay *1	0	
		Protocol *2	DF1 Slave	
		Transmit Retries *2	3	
		Slave Poll Timeout *2	3000	
		EOT Suppression *2	No Check	
		Error Detection *2	BCC	
		Enable Duplicate Detection *2	No Check (Disable)	


^{*1} Set via the Rockwell Ladder Logic Software RSLogix 5000 "Serial Port" menu.

^{*2} Set via the Rockwell Ladder Logic Software RSLogix 5000 "System Protocol" menu.

2.17.5 Error Codes

■PLC Error Codes

Controller error codes are represented by the "Host communication error (02:**)", and indicated in the left lower corner of the GP screen. (** stands for an error code.)

* There are two types of PLC error codes - STS and EXT STS.

EXT STS error codes have the characters "0xD0" attached to them, to prevent them from overlapping with STS error codes. Thus, all error codes with the last characters of "0xCF" or earlier are STS error codes.

Ex.

When a (02:D2) Host Communication Error occurs, it becomes the EXT STS error code of "0x02".

When a (02:C0) Host Communication Error occurs, it becomes the STS error code of "0xC0".

A1

Maximum Number of Consecutive PLC Addresses

The following lists the maximum number of consecutive addresses that can be read by each PLC. Refer to these tables to utilize *Block Transfer*.

ControlLogix 5000 Series (using CPU unit Link I/F)

Device	Max No. of Consecutive Address	
Bit (BOOL)		
8 bit integer (SINT)		
16 bit integer (INT)	122 Words	
32 bit integer (DINT)		
32 bit float (REAL)		

A2

Device Codes and Address Codes

Device codes and address codes are used to specify indirect addresses for E-tags and K-tags.

ControlLogix 5000 Series (using CPU unit Link I/F)

	Device	Word Address	Device Code	Address Code
	Bit (BOOL)	BOOL000000~	8000	
		BOOL065000~	8200	
		BOOL130000~	8400	
		BOOL195000~	8600	
		BOOL260000~	8800	
		BOOL325000~	8A00	
В		BOOL390000~	8C00	
Bit Device		BOOL455000~	8E00	Double Word Address
		BOOL520000~	9000	Double Mora Address
ë		BOOL585000~	9200	
		BOOL650000~	9400	
		BOOL715000~	9600	
		BOOL780000~	9800	
		BOOL845000~	9A00	
		BOOL910000~	9C00	
		BOOL975000~	9E00	
	8 bit integer (SINT)	SINT000000~	4C00	
		SINT100000~	4E00	
		SINT200000~	5000	
Word Device		SINT300000~	5200	
		SINT400000~	8400	Word Address
		SINT500000~	5600	Word Address
		SINT600000~	5800	
		SINT700000~	5A00	
		SINT800000~	5C00	
		SINT900000~	5E00	

Appendix

	Device	Word Address	Device Code	Address Code	
		INT000000~	0000		
		INT065000~	0200		
		INT130000~	0400		
	16 bit integer (INT)	INT195000~	0600	1	
		INT260000~	0800		
		INT325000~	0A00		
		INT390000~	0C00		
		INT455000~	0E00	Word Address	
		INT520000~	1000	Word Address	
		INT585000~	1200		
		INT650000~	1400]	
		INT715000~	1600		
		INT780000~	1800		
		INT845000~	1A00		
		INT910000~	1C00		
		INT975000~	1E00		
		DINT000000~	2000		
		DINT065000~	2200		
		DINT130000~	2400		
		DINT195000~	2600		
		DINT260000~	2800		
		DINT325000~	2A00		
≤	32 bit integer (DINT)	DINT390000	2C00		
ord		DINT455000~	2E00	Double Word Address	
Word Device		DINT520000~	3000	Double Word Address	
) Vic		DINT585000~	3200		
;e		DINT650000~	3400		
		DINT715000~	3600		
		DINT780000~	3800		
		DINT845000~	3A00		
		DINT910000~	3C00		
		DINT975000~	3E00		
	32 bit float (REAL)	REAL000000~	6000		
		REAL065000	6200		
		REAL130000~	6400		
		REAL195000~	6600		
		REAL260000~	6800		
		REAL325000~	6A00		
		REAL390000~	6C00		
		REAL455000~	6E00	Double Word Address	
		REAL520000~	7000		
		REAL585000~	7200	_	
		REAL650000~	7400		
		REAL715000~	7600		
		REAL780000~	7800		
		REAL845000~	7A00	_	
		REAL910000~	7C00		
		REAL975000~	7E00		
Ш	LS area (LS)	LS0000~	4000	Word Address	